產(chǎn)品詳情
新聞:固原阻燃聚氨酯保溫管報價√歡迎下單
固原阻燃聚氨酯保溫管1、聚氨酯保溫管殼性能佳,熱損失為傳統(tǒng)管材的25%,可顯著降低成本,節(jié)約能源。2、防水功能優(yōu)異,極好的耐酸、耐堿、耐腐蝕。3、使用壽命長,可達50-70年。4、管徑可大可小,從DN22-DN1020;保溫厚度可厚可薄,從15--500mm。5、廣泛用于供熱管道、制冷管道、化工管道、工業(yè)管道等價格
研究了憎水劑對硅酸鹽水泥基飾面砂漿1~180d泛白的影響,并對其1d的作用機理進行了探討.結(jié)果表明:憎水劑可明顯硅酸鹽水泥基飾面砂漿28d內(nèi)的早期泛白,對其28~180d較長齡期的泛白則影響較小;1d時,憎水劑增大了硅酸鹽水泥基飾面砂漿內(nèi)部50nm~1μm的大毛細孔比例,明顯降低了其孔溶液中K+,Na+的濃度,并它們的遷移,使表面溶出的堿性離子總含量明顯降低,從而降低了表面的鹽浸出率,起到了泛白的作用.
聚氨酯直埋保溫管有十分突出的優(yōu)點:
1、聚氨酯直埋保溫管保溫性能好,熱損失僅為傳統(tǒng)管材的25%,長期運行可節(jié)約大量能源,顯著降低能源成本。
2、具有很強的防水和耐腐蝕能力,不需附設(shè)管溝,可直接埋入地下或水中,施工簡便迅速,綜合造價低。
3、在低溫條件下也具有良好的耐腐蝕和耐沖擊性,可直接埋入地下凍土。
4、使用壽命可達30-50年,正確的安裝和使用可使管網(wǎng)維修費用極低。
5、可設(shè)置報警系統(tǒng),自動檢測管網(wǎng)滲漏故障,準確指示故障位置并自動報警。
6、使用壽命可達30-50年。管徑:DN15--DN600 厚度:15--50mm 用途:集中供熱管道、制冷管道、工業(yè)管道等。
7、含氧指數(shù):≥27 密度:40--70kg/立方m 憎水率:0.03kg/立方cm 導(dǎo)熱系數(shù):0.022kcal/m.h.℃
聚氨酯保溫管殼自三十年代聚氨酯合成材料誕生以來,澳洋公司一直進行改良,力爭為社會提供的保溫建材,聚氨酯管殼作為一種優(yōu)良的絕熱保溫材料而得到迅速發(fā)展,其應(yīng)用范圍也越來越廣泛,更由于其施工簡便、節(jié)能防腐效果顯著而被大量地用于各種供熱、制冷、輸油、輸汽等各種管道。大量地用于各種供熱、制冷、輸油、輸汽等各種管道。
采用四步法三維編織以及VARTM技術(shù)制得三維編織復(fù)合材料T型梁,利用MTS 810.23儀器對材料進行準靜態(tài)三點彎曲測試,使用頻率為3Hz、應(yīng)力比R=1的正弦波加載條件對材料進行彎曲疲勞測試。根據(jù)測得的數(shù)據(jù)分析獲得S-N曲線、應(yīng)力位移曲線以及位移曲線,材料在50%應(yīng)力水平下其三點彎曲疲勞加載循環(huán)次數(shù)超過50萬次。通過終破壞形態(tài)可知,筋高處纖維的斷裂是導(dǎo)致材料終失效的主要破壞模式。
聚氨酯泡沫能與各種材料進行牢固的粘合,因此作為直埋管的保溫層幾乎無需考慮防腐層與之粘合的問題。聚氨酯保溫層的適應(yīng)溫度為+120℃-196℃,短時(十幾小時)可達+190℃。如果用戶需長期溫度190度,我們可根據(jù)用戶需要用高溫料成型。采用高功能聚醚多元醇和多次甲基多苯基多異氰酸酯為主要原料,在催化劑、發(fā)泡劑、表面活性劑等作用下,經(jīng)化學(xué)反映發(fā)泡而成。
聚氨酯管殼具有容量輕、強度高、絕熱、隔音、阻燃、耐寒、防腐、不吸水、施工簡便快捷等優(yōu)異特點,已成為建筑、運輸、石油、化工、電力、冷藏等工業(yè)部門絕熱保溫、防水堵漏、密封等不可缺少的材料。
聚氨脂直埋保溫管又稱“管中管”其有“兩步法”構(gòu)成,是由高密度聚乙烯外保護層、聚氨脂硬質(zhì)泡沫塑管和鋼管組成。 保溫層材料為密度60kg/m3至80kg/m3的硬質(zhì)聚氨酯泡沫,充分添滿鋼管與套管之間的間隙,并具有一定的粘接強度,使鋼管、外套管及保溫層三者之間形成一個牢固的整體。 聚氨酯直埋保溫管泡沫具有良好的機械性能和絕熱性能,通常情況下可耐溫120℃通過改性或與其它隔熱材料組合可耐溫180℃。
新聞:固原阻燃聚氨酯保溫管報價√歡迎下單對核磁共振冷凍測孔法(NMRC法)在水泥基材料中的應(yīng)用進行了試驗探索.通過使用介孔分子篩確定了冰熔點下降值與多孔材料孔徑關(guān)系,獲得熔點下降常數(shù),并以此測定了不同齡期、不同水灰比白水泥樣品的孔徑分布,對其可能的誤差來源作了分析.初步研究結(jié)果表明,核磁共振冷凍法測得的白水泥樣品孔徑分布信息可能比其他方法更為豐富,對封閉微孔的分辨更為其所特有.
采用含有引發(fā)劑、交聯(lián)劑的丙烯酸和丙烯酰胺單體溶液浸漬混凝土表層,通過紅外輻射引發(fā)原位合成吸水性樹脂(SAR)對該表層進行處理,并與斥水型有機硅防水劑(AAS)表層處理的混凝土試件進行了對比;通過不同碳化時間下的平均碳化深度和碳化層內(nèi)Ca(OH2),CaCO3的XRD特征峰變化規(guī)律表征了混凝土SAR表層處理前后的抗碳化能力;通過SEM分析了SAR改善混凝土抗碳化能力的機理.


