日韩床上生活一级视频|能看毛片的操逼网站|色悠悠网站在线观看视频|国产免费观看A淫色免费|国产av久久久久久久|免费A级视频美女网站黄|国产毛片av日韩小黄片|热久久免费国产视频|中文字幕无码色色|成人在线视频99久久久

電池原位紅外附件

數(shù)量(個) 價格
10 0.01元/個
  • 最小起訂: 1個
  • 發(fā)貨地址: 上海 浦東新區(qū)
  • 發(fā)布日期:2024-02-23
  • 訪問量:185
咨詢電話:181-9804-7742
打電話時請告知是在機電之家網(wǎng)上看到獲取更多優(yōu)惠。謝謝!
2

上海零露儀器設備有限公司

實名認證 企業(yè)認證
  • 企業(yè)地址:

更多>>推薦產(chǎn)品

詳細參數(shù)
品牌上海零露儀器型號IR
加工定制材質PEEK
產(chǎn)地其他

產(chǎn)品詳情

電池原位紅外附件

產(chǎn)品詳情


?

電化學原位紅外光譜分析是紅外分析技術的一個重要分支,能夠定性分析電催化(如CO2電還原等)反應、各種類型電池(如鋰離子、鋰硫電池等)充放電過程中電極表面的產(chǎn)物或中間產(chǎn)物隨時間(電位)不斷變化的趨勢,是研究電化學反應機理以及電化學反應動力學的重要手段之一。

構造原理

(1)兩電極體系,專為電池體系設計。

(2)電化學反應池氣密性良好,可通入反應氣體。

(3)金剛石晶體,適用性廣。

?

2:基本原理示意圖

?

附件組成

(1)紅外光譜儀主機適配底板,適配主流紅外光譜儀。

(2)光路系統(tǒng)。

(3)PEEK材質氣密性電化學池。

(4)O型圈密封件。

?

主要特點

(1)優(yōu)化的光路系統(tǒng),光通量大。

(2)電化學池密封性能好,可通入反應氣體。

(3)金剛石晶體光通量大。

(4)獨特的電極,電解液信號采集調節(jié)技術。

(5)可實現(xiàn)電化學紅外質譜三聯(lián)用。

(6)金剛石晶體板和電化學池拆卸方便,可方便在手套箱中組裝電池。

(7)提供現(xiàn)場技術服務。

?

主要技術參數(shù)

1.光譜范圍:250/525-4000 cm-1

2.晶體種類:金剛石晶體

3.電化學池:PEEK材質,兩電極體系,氣密性池體,可方便在手套箱中裝卸電池,設有進氣口和出氣口,可實現(xiàn)各類電池充放電過程中紅外光譜的采集。

4.溫控電化學池,溫控范圍:RT-100℃,溫控精度0.1℃。

5.電極與金剛石晶體距離調節(jié)系統(tǒng),帶刻度微調功能,重現(xiàn)性好,以實現(xiàn)觀測電解液溶劑化或電極表面物種變化。

6.電化學池可實現(xiàn)電化學質譜儀與紅外三聯(lián)用,提供多聯(lián)用技術方案。

7.反射次數(shù):單次反射。

8.反射類型:外反射。

9.光路反射系統(tǒng)適配主流品牌紅外光譜儀,提供光譜儀適配底板,光路系統(tǒng)方便安放或取出光譜儀樣品倉。

?

?

?

應用案例

?

?

鋰離子電池? Chem. Mater.?2020, 32, 8, 3405–3413



?

鋰離子電池 ACS Energy Lett. 2020, 5, 1022?1031



?

鋅離子電池 Adv. Funct. Mater. 2020, 2003890



?

鋰離子電池 ?Joule 2022, 6, 399–417

?

部分客戶論文發(fā)表清單:

1.?Jianping Xiao*, Bin Zhang*, et al. Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to bate.?Nat. Commun.?2020, 11, 3415

2.?Lei Yan, Yonggang Wang*, et al. Chemically Self-Charging Aqueous Zinc-Organic Battery.?J. Am. Chem. Soc.?2021, 143, 15369-15377?

3.?Bingliang Wang, Yongyao Xia*, et al. In situ structural evolution of the multi-site alloy electrocatalyst to manipulate the intermediate for enhanced water oxidation reb.?Energy Environ. Sci.?2020, 13, 2200-2208

4.?Yang Peng*, et al. Breaking Linear Scaling Relationship by Combal and Structural Crafting of Ternary Cu-Au/Ag Nanoframes for Electrocatalytic Ethylene Production.?Angew. Chem. Int. Ed.?2021, 60, 2508-2518?

5.?Zhuo Yu, Yonggang Wang*, et al. Boosting Polysulfide Redox Kinetics by Graphene-Supported Ni Nanoparticles with Carbon Coating.?Adv. Energy Mater.?2020, 10, 2000907

6.?Xinwei Ding, Zhi Yang*, et al. Biomimetic Molecule Catalysts to Promote the Conversion of Polysulfides for Advanced Lithium–Sulfur Batteries?Adv. Funct. Mater.?2020, 30, 2003354?

7.?Hong Guo*, Xueliang Sun*, et al. Dual Active Site of the Azo and Carbonyl-Modified Covalent Organic Framework for High-Perbance Li Storage.?ACS Energy Lett.?2020, 5, 1022-1031

8.?Bin Zhang* et al. Superficial Hydroxyl and Amino Groups Synergistically Active Polymeric Carbon Nitride for CO2?Electroreduction.?ACS Catal.?2019, 9, 10983-10989?

9.?Suya Zhou, Zhi Yang*, et al. Dual-Regulation Strategy to Improve Anchoring and Conversion of Polysulfides in Lithium–Sulfur Batteries?ACS Nano.?2020, 14, 7538–7551

10.?Yongyao Xia*, et al. Low-Temperature Charge/Discharge of Rechargeable Battery Realized by Intercalation Pseudocapacitive Behavior.?Adv. Sci.?2020, 7, 2000196

11.?Lei Wang*, Yonggang Wang, et al. Pencil-drawing on nitrogen and sulfur co-doped carbon paper: An effective and stable host to pre-store Li for high-perbance lithium–air batteries.?Energy Storage Materials.?2020, 26, 593-603

12.?Bin Zhang, et al. Unveiling in situ evolved In/In2O3? x heterostructure as the active phase of In2O3 toward efficient electroreduction of CO2?to bate.?Science Bulletin.?2020, 65, 1547-1554

13.?Huani Li, Shubiao Xia*, Hong Guo*, et al. Red Phosphorus Confined in Hierarchical Hollow Surface-Modified Co9S8 for Enhanced Sodium Storage.?Sustainable Energy Fuels.?2020, 4, 2208-2219?

14.?Guanglei Cui*, Liquan Chen, et al. Non-flammable nitrile deep eutectic electrolyte enables high voltage lithium bl batteries.?Chem. Mater.?2020, 32, 3405-3413?

15.?Guanglei Cui*, et al. Investigation on the Cathodic Interfacial Stability of Nitrile Electrolyte and its perbance with High Voltage LiCoO2?Chem. Commun.?2020, 56, 4998-5001?

16.?Zhongbin Zhuang*, et al. A highly-active, stable and low-cost platinum-free anode catalyst based on RuNi for hydroxide exchange membrane fuel cells.?Nat. Commun.?2020, 11, 5651?

17.?Tiancun Liu, Yong Wang*, et al. Organic supramolecular protective layer with rearranged and defensive Li deb for stable and dendrite-free lithium bl anode.?Energy Storage Materials.?2020, 32, 261–271

18.?X. Yin, Y. Wang*, et al. Designing cobalt-based coordination polymers for high-perbance sodium and lithium storage: from controllable synthesis to mechanism detection.?Materials Today Energy.?2020, 17, 100478

19.?Song Chen, Jintao Zhang*, et al. Regulation of Lamellar Structure of Vanadium Oxide via Polyaniline Intercalation for High-Perbance Aqueous Zinc-Ion Battery.?Adv. Funct. Mater.?2020, 30, 2003890?

20.?Yanrong Xue, Zhongbin Zhuang*, et al. Sulfate-Functionalized RuFeOx as Highly Efficient Oxygen Evolution Reb Electrocatalyst in Acid.?Adv. Funct. Mater.?2021, 31, 2101405

21.?Hong Guo*, et al. Cooperative catalytic interface accelerates redox kinetics of sulfur species for high-perbance Li-S batteries.?Energy Storage Materials.?2021, 40, 139-149

22.?Bin Zhang*, et al. Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping.?SCIENCE CHINA Chemistry.?2021, 64, 1493–1497

23.?Yang Peng*, et al. Geometric Modulation of Local CO Flux in Ag@Cu2O Nanoreactors for Steering the CO2RR pathway toward High-Efficacy Methane Production.?Adv. Mater.?2021, 33, 2101741

24.?Yonggang Wang*, et al. Molecular Tailoring of n/p-type Phenothiazine Organic Scaffold for Zinc Batteries.?Angew. Chem. Int. Ed.?2021, 60, 20826-20832?

25.?Hongliang Jiang*, Chunzhong Li*, et al. Dynamically Formed Surfactant Assembly at the Electrified Electrode–Electrolyte Interface Boosting CO2?Electroreduction.?J. Am. Chem. Soc. 2022, 144, 6613–6622

26.?Yang Peng*, et al. Au-activated N motifs in non-coherent cupric porphyrin bl organic frameworks for promoting and stabilizing ethylene production.?Nat. Commun.?2022, 13, 63?

27.?Jie Zeng*, et al. Copper-catalysed exclusive CO2?to pure bic acid conversion via single-atom alloying.?Nature Nanotechnology.?2021, 16, 1386-1393?

28.?Min-Rui Gao*, et al. Identification of Cu(100)/Cu(111) Interfaces as Superior Active Sites for CO Dimerization During CO2?Electroreduction.?J. Am. Chem. Soc.?2022, 144, 1, 259-269?

29.?Chen Feng, Shiming Zhou*, Jie Zeng*, et al. Tuning the Electronic and Steric Interb at the Atomic Interface for Enhanced Oxygen Evolution.?J. Am. Chem. Soc.?2022, 144,21,9271-9279?

30.?Rui Lin, Jianhui Wang, et al. Asymmetric donor-acceptor moleculeregulated core-shell-solvation electrolyte for high-voltage aqueous batteries.?Joule?2022, 6, 399–417?

31.?Xiaogang Zhang*, et al. Successive Cationic and Anionic (De)-Intercalation/Incorporation into an Ion-Doped Radical Conducting Polymer.?Batteries & Supercaps?2019, 2, 979-984

32.?Zhongju Wang, Yongzhu Fu*, et al. BiredoxIonic AnthraquinoneCoupled Ethylviologen Composite Enables Reversible Multielectron Redox Chemistry for LiOrganic Batteries.?Adv. Sci.?2022, 9, 2103632?

33.?Jintao Zhang*, et al. Defect evolution of hierarchical SnO2?aggregatesfor boosting CO2?electrocatalytic reduction.?J. Mater. Chem. A?2021, 9, 14741-14751

34.?Fei Ai, Yijun Lu*, et al. Heteropoly acid negolytes for high-power-density aqueous redox flow batteries at low temperatures.?Nature Energy?2022, 7, 417–426?

35.?Zhejun Li, Yijun Lu*. Polysulfide-based redox flow batteries with long life and low levelized cost enabled by charge-reinforced ion-selective membranes.?Nature Energy?2021, 6, 517–528

36.?Shanshan Lu, Wei Zhou. et al. Phenanthrenequinone-like moiety functionalized carbon for electrocatalytic acidic oxygen evolution.?Chem.?2022, 8, 1415-1426.??

37.?Tieliang Li, Yifu Yu, Bin Zhang*, et al. Sulfate-Enabled Nitrate Synthesis from Nitrogen Electrooxidation on Rhodium Electrocatalyst.?Angew. Chem. Int. Ed.?2022, e202204541?

38.?Yanbo Li, Bin Zhang, Yifu Yu*, et al. Electrocatalytic Reduction of Low-Concentration Nitric Oxide into Ammonia over Ru Nanosheets.?ACS Energy Letters?2022, 7, 1187-1194?

39.?Yanmei Huang, Yifu Yu, Bin Zhang*, et al. Direct Electrosynthesis of Urea from Carbon Dioxide and Nitric Oxide.?ACS Energy Letters?2022, 7, 284-291

40.?Wenfu Xie, Hao Li, Min Wei*, et al. NiSn Atomic Pair on Integrated Electrode for Synergistic Electrocatalytic CO2?Reduction.?Angew. Chem. Int. Ed.?2021, 60, 7382–7388

41.?Rui Sui, Jiajing Pei, Zhongbin Zhuang*, et al. Engineering Ag?Nx Single-Atom Sites on Porous Concave N-Doped Carbon for Boosting CO2?Electroreduction.?ACS Appl. Mater. Interfaces?2021, 13, 17736-17744?

42.?Tiliang Li, Yuting Wang, Yifu Yu*, Bin Zhang*, et al. Ru-Doped Pd Nanoparticles for Nitrogen Electrooxidation to Nitrate.?ACS Catal.?2021, 11, 14032-14037

43.?Bin Zhang*, et al. Promoting selective electroreduction of nitrates to ammonia over electron-deficient Co modulated by rectifying Schottky contacts.?Science China Chemistry?2020, 63, 1469-1476

44.?Jiangwei Shi, Bin Zhang*, et al. Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping.?Science China Chemistry?2021, 64, 1493-1497?

45.?Jintao Zhang* et al. Atomic Bridging Structure of Nickel-Nitrogen-Carbon for Highly Efficient Electrocatalytic Reduction of CO2.?Angew. Chem.Int. Ed.?2022, 61, e202113918

46.?Lang Xu* et al. Gadolinium Changes the Local Electron Densities of Nickel 3d Orbitals for Efficient Electrocatalytic CO2 Reduction.?Angew. Chem.Int. Ed.?2022, 61, e202201166

47.?Bin Zhang* et al. Phenanthrenequinone-like moiety functionalized carbon for electrocatalytic acidic oxygen evolution.?Chem.?2022, 8, 1415-1426

48.?Sheng Dai*,?Minghui Zhua*,?Yifan Han* et al. Probing the role of surface hydroxyls for Bi, Sn and In catalysts during CO2 Reduction.?Applied Catalysis B: Environmental?2021, 298,

49.?Nan Wang, Yonggang Wang*, et al. Zinc-organic Battery with a Wide Operation-temperature Window from -70 to 150 oC.?Angew. Chem. Int. Ed.?2020,59,14577-14583

50.?Nannan Meng, Yifu Yu, Bin Zhang*, et al. Efficient Electrosynthesis of Syngas with Tunable CO/H2 Ratios over ZnxCd1-xS-Amine Inorganic-Organic Hybrids.?Angew. Chem. Int. Ed.?2019, 58, 18908–18912

?

?

溫馨提示

  • 還沒找到想要的產(chǎn)品嗎? 立即發(fā)布采購信息,讓供應商主動與您聯(lián)系!

免責聲明:所展示的信息由會員自行提供,內容的真實性、準確性和合法性由發(fā)布會員負責,機電之家網(wǎng)對此不承擔任何責任。機電之家網(wǎng)不涉及用戶間因交易而產(chǎn)生的法律關系及法律糾紛,糾紛由您自行協(xié)商解決。
友情提醒:本網(wǎng)站僅作為用戶尋找交易對象,就貨物和服務的交易進行協(xié)商,以及獲取各類與貿易相關的服務信息的平臺。為避免產(chǎn)生購買風險,建議您在購買相關產(chǎn)品前務必確認供應商資質及產(chǎn)品質量。過低的價格、夸張的描述、私人銀行賬戶等都有可能是虛假信息,請采購商謹慎對待,謹防欺詐,對于任何付款行為請您慎重抉擇!如您遇到欺詐等不誠信行為,請您立即與機電之家網(wǎng)聯(lián)系,如查證屬實,機電之家網(wǎng)會對該企業(yè)商鋪做注銷處理,但機電之家網(wǎng)不對您因此造成的損失承擔責任!
您也可以進入“消費者防騙指南”了解投訴及處理流程,我們將竭誠為您服務,感謝您對機電之家網(wǎng)的關注與支持!

您是不是在找