| -6 | -5 | -4 | -3 | -2 | -1 | -0 | +0 | 1 | 2 | 3 | 4 | 5 | 6 | |
| -6 | 7 | 6.5 | 7 | 6.5 | 4 | 4 | 4 | 4 | 1.5 | 1 | 0 | 0 | 0 | 0 |
| -5 | 6.5 | 6.5 | 6.5 | 6.5 | 4 | 4 | 4 | 4 | 1.5 | 1.5 | 0 | 0 | 0 | 0 |
| -4 | 7 | 6.5 | 7 | 6.5 | 4 | 4 | 4 | 4 | 1.5 | 1 | 0 | 0 | 0 | 0 |
| -3 | 6.5 | 6.5 | 6.5 | 6.5 | 4 | 4 | 3 | 3 | 1 | 1 | -3 | -3 | -3 | -3 |
| -2 | 7 | 6.5 | 7 | 6.5 | 4 | 4 | 1 | 1 | 0 | 0 | -4 | -4 | -4 | -4 |
| -1 | 7 | 6.5 | 7 | 6.5 | 4 | 4 | 1 | 1 | 0 | 0 | -4 | -4 | -4 | -4 |
| 0 | 7 | 6.5 | 7 | 6.5 | 4 | 4 | 0 | 0 | -4 | -4 | -6.5 | -7 | -6.5 | -7 |
| 1 | 4 | 4 | 4 | 4 | 0 | 0 | -1 | -1 | -4 | -4 | -6.5 | -7 | -6.5 | -7 |
| 2 | 4 | 4 | 4 | 4 | 0 | 0 | -1 | -1 | -4 | -4 | -6.5 | -7 | -6.5 | -7 |
| 3 | 3 | 3 | 3 | 3 | -1 | -1 | -3 | -3 | -4 | -4 | -6.5 | -6.5 | -6.5 | -6.5 |
| 4 | 0 | 0 | 0 | 0 | -1 | -1.5 | -4 | -4 | -4 | -4 | -6.5 | -7 | -6.5 | -7 |
| 5 | 0 | 0 | 0 | 0 | -1.5 | -1.5 | -4 | -4 | -4 | -4 | -6.5 | -6.5 | -6.5 | -6.5 |
| 6 | 0 | 0 | 0 | 0 | -1 | -1.5 | -4 | -4 | -4 | -4 | -6.5 | -7 | -6.5 | -7 |
以表1的第10行第7列為例,即E*=(0,0,0,0,0,0,1,0,0,0,0,0,0,0),CE*=(0,0,0,0,0,0,0,0,0,1,0,0,0)為其特征向量,由特征展開近似推理方法[4]的式:
可計算出α3=0.3,α4=1,β5=0.7,β6=0.7,β7=0.1,(α3∧β5)U4=0.3U4,(α3∧β6)U3=0.3U3, (α3∧β7)U3=0.1U3,(α4∧β5)U3=0.7U3,(α4∧β6)U2=0.7U2,(α4∧β7)U2=0.1U2,由其余50條規(guī)則得到的αi或βj總有一個為0,故這一對模糊輸入得到的模糊輸出為:
U=0.3U4∪0.7U3∪0.3U3∪0.1U3∪0.7U2∪0.1U2
=(0,0.14,0.49,0.7,0.49,0.56,0.7,0.3,0.15,0,0,0,0,0,0)
經(jīng)過解模糊得到精確輸出為:
u=((-4)+(-1))/2=-2.5
3.2 增加模糊量化論域的模糊控制器
以增加模糊量化論域的模糊控制器為例進行模糊推理,計算出控制表。取誤差E、誤差變化CE和控制量U的量化論域均為:
{-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10}
取誤差E、誤差變化CE和控制量U的模糊論域均為:
{NVB,NB,NM,NS,NVS,ZO,PVS,PS,PM,PB,PVB}
誤差E、誤差變化CE和控制量U的隸屬函數(shù)均如圖5所示。
借鑒常規(guī)模糊控制器設(shè)計經(jīng)驗,得到語言控制規(guī)則表,如表3所示。表中共有121條控制規(guī)則,其中一些規(guī)則可以合并。但利用計算機進行推理計算,這些規(guī)則就沒必要合并了。
表3 E、CE→U 模糊控制規(guī)則表





